Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - 4.7 L'Hopital's Rule - 4.7 Exercises - Page 307: 30

Answer

The solution is $$\lim_{x\to\infty}\frac{\tan^{-1}x-\pi/2}{1/x}=-1$$

Work Step by Step

We will calculate this limit using L'Hopital's rule. "LR" will stand for "Apply L'Hopital's rule": $$\lim_{x\to\infty}\frac{\tan^{-1}x-\pi/2}{1/x}=\left[\frac{0}{0}\right][\text{LR}]=\lim_{x\to\infty}\frac{(\tan^{-1}x-\pi/2)'}{(1/x)'}=\lim_{x\to\infty}\frac{\frac{1}{1+x^2}}{-\frac{1}{x^2}}=\lim_{x\to\infty}-\frac{x^2}{1+x^2}=\lim_{x\to\infty}\frac{-x^2}{x^2\left(\frac{1}{x^2}+1\right)}=\lim_{x\to\infty}\frac{-1}{\frac{1}{x^2}+1}\frac{}{}=\left[\frac{-1}{\frac{1}{\infty^2}+1}\right]=\left[\frac{-1}{0+1}\right]=-1.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.