Answer
The solution
$$\lim_{x\to\infty}\frac{e^{1/x}-1}{1/x}=1.$$
Work Step by Step
We will calculate this limit using L'Hopital's rule. "LR" will stand for "Apply L'Hopital's rule":
$$\lim_{x\to\infty}\frac{e^{1/x}-1}{1/x}=\left[\frac{0}{0}\right][\text{LR}]=\lim_{x\to\infty}\frac{(e^{1/x}-1)'}{(1/x)'}=\lim_{x\to\infty}\frac{e^{1/x}(1/x)'}{(1/x)'}=\lim_{x\to\infty}e^{1/x}=e^{1/\infty}=e^0=1.$$