Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - 4.7 L'Hopital's Rule - 4.7 Exercises - Page 307: 3

Answer

1) Verify $0/0$ form. 2) If 1) is verified apply equality $$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}$$ 3) Calculate the limit. If the form is indeterminate again repeat from 1).

Work Step by Step

1) If given $$\lim_{x\to a}\frac{f(x)}{g(x)}$$ calculate $$\lim_{x\to a} f(x),\quad \lim_{x\to a}g(x).$$ if they are both equal to $0$ we got $0/0$ indeterminate form. 2) Apply equality $$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}.$$ 3) Calculate $$\lim_{x\to a}f'(x),\quad \lim_{x\to a}g'(x)$$ if $\lim_{x\to a}f'(x)/\lim_{x\to a}g'(x)$ is determinate then the initial limit is equal to this ratio. If not repeat the procedure from step 1) but on the transformed limit.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.