Answer
\[\begin{align}
& \text{a}\text{. }\overline{C}\left( x \right)=-0.04x+100+\frac{800}{x},\text{ }C'\left( x \right)=-0.08x+100 \\
& \text{b}\text{.}\overline{C}\left( 500 \right)=\$81.60/\text{item},\text{ }C'\left( 500 \right)=\$60/\text{item } \\
& \text{c}\text{.The average cost per item when 500 items are produced is } \\
& \$81.60/\text{item}\text{.} \\
& \text{The cost of producing 501st item is 60. }\!\\\!\!\text{ } \\
\end{align}\]
Work Step by Step
\[\begin{align}
& \text{Let }C\left( x \right)=-0.04{{x}^{2}}+100x+800,\text{for }0\le x\le 1000,\text{ }a=500 \\
& \\
& \text{a}\text{. The average cost function is given by: }\overline{C}\left( x \right)=\frac{C\left( x \right)}{x},\text{ then} \\
& \overline{C}\left( x \right)=\frac{C\left( x \right)}{x}=\frac{-0.04{{x}^{2}}+100x+800}{x} \\
& \text{Simplifying} \\
& \overline{C}\left( x \right)=-0.04x+100+\frac{800}{x} \\
& \text{The marginal cost function is }C'\left( x \right) \\
& C'\left( x \right)=\frac{d}{dx}\left[ -0.04{{x}^{2}}+100x+800 \right] \\
& C'\left( x \right)=-0.08x+100 \\
& \\
& \text{b}\text{. The average and marginal cost when }x=a=500\text{ is} \\
& \overline{C}\left( 500 \right)=-0.04\left( 500 \right)+100+\frac{800}{500} \\
& \overline{C}\left( 500 \right)=81.6 \\
& or \\
& \overline{C}\left( 500 \right)=\$81.60/\text{item} \\
& \\
& and \\
& \\
& C'\left( 500 \right)=-0.08\left( 500 \right)+100 \\
& C'\left( 500 \right)=60 \\
& C'\left( 500 \right)=\$60/\text{item} \\
& \\
& \text{c}\text{. From the result of the part b, the average cost per item when} \\
& \text{500 items are produced is }\$81.60/\text{item}\text{.} \\
& \text{The cost of producing 501st item is 60. }\!\\\!\!\text{ } \\
\end{align}\]