Answer
\[\begin{align}
& \text{a}\text{. }\overline{C}\left( x \right)=\frac{1000}{x}+0.1,\text{ }C'\left( x \right)=0.1 \\
& \text{b}\text{.}\overline{C}\left( 2000 \right)=\$0.60/\text{item},\text{ }C'\left( 2000 \right)=\$0.10/\text{item } \\
& \text{c}\text{.The average cost per item when 2000 items are produced is } \\
& \$0.60/\text{item}\text{.} \\
& \text{The cost of producing 2001st item is 0}\text{.10. }\!\\\!\!\text{ } \\
& \\
\end{align}\]
Work Step by Step
\[\begin{align}
& \text{Let }C\left( x \right)=1000+0.1x,\text{for the interval }0\le x\le 5000,\text{ }a=2000 \\
& \\
& \text{a}\text{. The average cost function is given by: }\overline{C}\left( x \right)=\frac{C\left( x \right)}{x},\text{ then} \\
& \overline{C}\left( x \right)=\frac{C\left( x \right)}{x}=\frac{1000+0.1x}{x} \\
& \text{Simplifying} \\
& \overline{C}\left( x \right)=\frac{1000}{x}+0.1 \\
& \text{The marginal cost function is }C'\left( x \right) \\
& C'\left( x \right)=\frac{d}{dx}\left[ 1000+0.1x \right] \\
& C'\left( x \right)=0.1 \\
& \\
& \text{b}\text{. The average and marginal cost when }x=a=2000\text{ is} \\
& \overline{C}\left( 2000 \right)=\frac{1000}{2000}+0.1 \\
& \overline{C}\left( 2000 \right)=0.6 \\
& or \\
& \overline{C}\left( 2000 \right)=\$0.60/\text{item} \\
& \\
& and \\
& \\
& C'\left( 2000 \right)=0.1 \\
& C'\left( 2000 \right)=\$0.10/\text{item} \\
& \\
& \text{c}\text{. From the result of the part b, the average cost per item when} \\
& \text{2000 items are produced is }\$0.60/\text{item}\text{.} \\
& \text{The cost of producing 2001st item is 0}\text{.10. }\!\\\!\!\text{ } \\
\end{align}\]