Answer
\[\begin{align}
& \text{a}\text{. }\overline{C}\left( x \right)=-0.01x+40+\frac{100}{x},\text{ }C'\left( x \right)=-0.02x+40 \\
& \text{b}\text{.}\overline{C}\left( 1000 \right)=\$30.10/\text{item},\text{ }C'\left( 1000 \right)=\$20/\text{item } \\
& \text{c}\text{.The average cost per item when 1000 items are produced is } \\
& \$30.10/\text{item}\text{.} \\
& \text{The cost of producing 1001st item is 20. }\!\\\!\!\text{ } \\
\end{align}\]
Work Step by Step
\[\begin{align}
& \text{Let }C\left( x \right)=-0.01{{x}^{2}}+40x+100,\text{for }0\le x\le 1500,\text{ }a=1000 \\
& \\
& \text{a}\text{. The average cost function is given by: }\overline{C}\left( x \right)=\frac{C\left( x \right)}{x},\text{ then} \\
& \overline{C}\left( x \right)=\frac{C\left( x \right)}{x}=\frac{-0.01{{x}^{2}}+40x+100}{x} \\
& \text{Simplifying} \\
& \overline{C}\left( x \right)=-0.01x+40+\frac{100}{x} \\
& \text{The marginal cost function is }C'\left( x \right) \\
& C'\left( x \right)=\frac{d}{dx}\left[ -0.01{{x}^{2}}+40x+100 \right] \\
& C'\left( x \right)=-0.02x+40 \\
& \\
& \text{b}\text{. The average and marginal cost when }x=a=1000\text{ is} \\
& \overline{C}\left( 1000 \right)=-0.01\left( 1000 \right)+40+\frac{100}{1000} \\
& \overline{C}\left( 1000 \right)=30.1 \\
& or \\
& \overline{C}\left( 1000 \right)=\$30.10/\text{item} \\
& \\
& and \\
& \\
& C'\left( 1000 \right)=-0.02\left( 1000 \right)+40 \\
& C'\left( 1000 \right)=20 \\
& C'\left( 1000 \right)=\$20/\text{item} \\
& \\
& \text{c}\text{. From the result of the part b, the average cost per item when} \\
& \text{1000 items are produced is }\$30.10/\text{item}\text{.} \\
& \text{The cost of producing 1001st item is 20. }\!\\\!\!\text{ } \\
\end{align}\]