Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.4 The Product and Quotient Rules - 3.4 Exercises - Page 162: 91

Answer

\[\begin{align} & \text{a}\text{. }f\left( x \right)g\left( x \right)h'\left( x \right)+f\left( x \right)h\left( x \right)g'\left( x \right)+h\left( x \right)g\left( x \right)f'\left( x \right) \\ & \text{b}\text{. }2{{e}^{2x}}\left( {{x}^{2}}+3x-2 \right) \\ \end{align}\]

Work Step by Step

\[\begin{align} & \text{Let }\frac{d}{dx}\left[ f\left( x \right)g\left( x \right)h\left( x \right) \right] \\ & \text{Write as }\frac{d}{dx}\left[ \left( f\left( x \right)g\left( x \right) \right)h\left( x \right) \right] \\ & \text{a}\text{. Compute the derivative using the product rule} \\ & =f\left( x \right)g\left( x \right)\frac{d}{dx}\left[ h\left( x \right) \right]+h\left( x \right)\frac{d}{dx}\left[ f\left( x \right)g\left( x \right) \right] \\ & =f\left( x \right)g\left( x \right)h'\left( x \right)+h\left( x \right)f\left( x \right)\frac{d}{dx}\left[ g\left( x \right) \right]+h\left( x \right)g\left( x \right)\frac{d}{dx}\left[ f\left( x \right) \right] \\ & =f\left( x \right)g\left( x \right)h'\left( x \right)+h\left( x \right)f\left( x \right)g'\left( x \right)+h(x)g\left( x \right)f'\left( x \right) \\ & \text{Rearranging} \\ & =f\left( x \right)g\left( x \right)h'\left( x \right)+f\left( x \right)h\left( x \right)g'\left( x \right)+h\left( x \right)g\left( x \right)f'\left( x \right) \\ & \\ & \text{b}\text{. }\frac{d}{dx}\left[ {{e}^{2x}}\left( x-1 \right)\left( x+3 \right) \right] \\ & \text{Let }f\left( x \right)={{e}^{2x}}\Rightarrow \text{ }f'\left( x \right)=2{{e}^{2x}} \\ & \text{ }g\left( x \right)=x-1\Rightarrow \text{ }g'\left( x \right)=1 \\ & \text{ }h\left( x \right)=x+3\Rightarrow \text{ }h'\left( x \right)=1 \\ & \text{Substituting into} \\ & =f\left( x \right)g\left( x \right)h'\left( x \right)+f\left( x \right)h\left( x \right)g'\left( x \right)+h\left( x \right)g\left( x \right)f'\left( x \right) \\ & \text{We obtain} \\ & ={{e}^{2x}}\left( x-1 \right)\left( 1 \right)+{{e}^{2x}}\left( x+3 \right)\left( 1 \right)+\left( x-1 \right)\left( x+3 \right)\left( 2{{e}^{2x}} \right) \\ & \text{Simplifying} \\ & =x{{e}^{2x}}-{{e}^{2x}}+x{{e}^{2x}}+3{{e}^{2x}}+\left( {{x}^{2}}+2x-3 \right)\left( 2{{e}^{2x}} \right) \\ & =2x{{e}^{2x}}+2{{e}^{2x}}+2{{x}^{2}}{{e}^{2x}}+4x{{e}^{2x}}-6{{e}^{2x}} \\ & =2{{x}^{2}}{{e}^{2x}}+6x{{e}^{2x}}-4{{e}^{2x}} \\ & \text{Factoring} \\ & =2{{e}^{2x}}\left( {{x}^{2}}+3x-2 \right) \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.