Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.4 The Product and Quotient Rules - 3.4 Exercises - Page 162: 87

Answer

\[f\left( x \right)g''\left( x \right)+g\left( x \right)f''\left( x \right)+2f'\left( x \right)g'\left( x \right)\]

Work Step by Step

\[\begin{align} & \frac{d}{dx}\left[ f\left( x \right)g\left( x \right) \right] \\ & \text{Using the product rule} \\ & \frac{d}{dx}\left[ f\left( x \right)g\left( x \right) \right]=f\left( x \right)\frac{d}{dx}\left[ g\left( x \right) \right]+g\left( x \right)\frac{d}{dx}\left[ f\left( x \right) \right] \\ & \frac{d}{dx}\left[ f\left( x \right)g\left( x \right) \right]=f\left( x \right)g'\left( x \right)+g\left( x \right)f'\left( x \right) \\ & \text{Calculate the second derivative} \\ & \frac{{{d}^{2}}}{d{{x}^{2}}}\left[ f\left( x \right)g\left( x \right) \right]=\frac{d}{dx}\left[ f\left( x \right)g'\left( x \right) \right]+\frac{d}{dx}\left[ g\left( x \right)f'\left( x \right) \right] \\ & \text{Using the product rule} \\ & =f\left( x \right)\frac{d}{dx}\left[ g'\left( x \right) \right]+g'\left( x \right)\frac{d}{dx}\left[ f\left( x \right) \right]+g\left( x \right)\frac{d}{dx}\left[ f'\left( x \right) \right] \\ & \text{ }+f'\left( x \right)\frac{d}{dx}\left[ g\left( x \right) \right] \\ & =f\left( x \right)g''\left( x \right)+g'\left( x \right)f'\left( x \right)+g\left( x \right)f''\left( x \right)+f'\left( x \right)g'\left( x \right) \\ & \text{Simplifying} \\ & \frac{{{d}^{2}}}{d{{x}^{2}}}\left[ f\left( x \right)g\left( x \right) \right]=f\left( x \right)g''\left( x \right)+g\left( x \right)f''\left( x \right)+2f'\left( x \right)g'\left( x \right) \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.