Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.4 The Product and Quotient Rules - 3.4 Exercises - Page 162: 90

Answer

\[\frac{{{g}^{2}}\left( x \right)f''\left( x \right)-g\left( x \right)f\left( x \right)g''\left( x \right)-2g'\left( x \right)g\left( x \right)f'\left( x \right)+2f\left( x \right){{\left( g'\left( x \right) \right)}^{2}}}{{{\left[ g\left( x \right) \right]}^{3}}}\]

Work Step by Step

\[\begin{align} & \frac{d}{dx}\left[ \frac{f\left( x \right)}{g\left( x \right)} \right] \\ & \text{By the quotient rule, we know that} \\ & \frac{d}{dx}\left[ \frac{f\left( x \right)}{g\left( x \right)} \right]=\frac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{\left[ g\left( x \right) \right]}^{2}}} \\ & \text{Calculate the second derivative by the quotient rule} \\ & =\frac{{{\left[ g\left( x \right) \right]}^{2}}\frac{d}{dx}\left[ g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right) \right]}{{{\left[ g\left( x \right) \right]}^{4}}} \\ & -\frac{\left[ g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right) \right]\frac{d}{dx}{{\left[ g\left( x \right) \right]}^{2}}}{{{\left[ g\left( x \right) \right]}^{4}}} \\ & \text{Differentiate} \\ & =\frac{{{\left[ g\left( x \right) \right]}^{2}}\left[ g\left( x \right)f''\left( x \right)+f'\left( x \right)g'\left( x \right)-f\left( x \right)g''\left( x \right)-g'\left( x \right)f'\left( x \right) \right]}{{{\left[ g\left( x \right) \right]}^{4}}} \\ & -\frac{\left[ g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right) \right]\left[ 2g\left( x \right)g'\left( x \right) \right]}{{{\left[ g\left( x \right) \right]}^{4}}} \\ & \text{Simplifying} \\ & =\frac{\left[ g\left( x \right)f''\left( x \right)-f\left( x \right)g''\left( x \right) \right]}{{{\left[ g\left( x \right) \right]}^{2}}} \\ & -\frac{\left[ g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right) \right]\left[ 2g'\left( x \right) \right]}{{{\left[ g\left( x \right) \right]}^{3}}} \\ & =\frac{{{g}^{2}}\left( x \right)f''\left( x \right)-g\left( x \right)f\left( x \right)g''\left( x \right)-2g'\left( x \right)g\left( x \right)f'\left( x \right)+2f\left( x \right){{\left( g'\left( x \right) \right)}^{2}}}{{{\left[ g\left( x \right) \right]}^{3}}} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.