Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.3 Rules of Differentiation - 3.3 Exercises - Page 152: 66

Answer

$e=2.718281828459045....$

Work Step by Step

We have to compute $\lim\limits_{n \to \infty} \left(1+\dfrac{1}{n}\right)^n$. We use a calculator to evaluate the function $f(n)=\left(1+\dfrac{1}{n}\right)^n$ for very large values of $n$. Let $x_1=10^6,x_2=10^7, x_3=10^8$. $f(x_1)=f(10^6)=\left(1+\dfrac{1}{10^6}\right)^{10^6}=2.7182804691$ $f(x_2)=f(10^7)=\left(1+\dfrac{1}{10^7}\right)^{10^7}=2.71828169413$ $f(x_3)=f(10^8)=\left(1+\dfrac{1}{10^8}\right)^{10^8}=2.71828179835$ Therefore we have: $\lim\limits_{n \to \infty} \left(1+\dfrac{1}{n}\right)^n=e$, where $e=2.718281828459045....$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.