Answer
$e=2.718281828459045....$
Work Step by Step
We have to compute $\lim\limits_{n \to \infty} \left(1+\dfrac{1}{n}\right)^n$.
We use a calculator to evaluate the function $f(n)=\left(1+\dfrac{1}{n}\right)^n$ for very large values of $n$.
Let $x_1=10^6,x_2=10^7, x_3=10^8$.
$f(x_1)=f(10^6)=\left(1+\dfrac{1}{10^6}\right)^{10^6}=2.7182804691$
$f(x_2)=f(10^7)=\left(1+\dfrac{1}{10^7}\right)^{10^7}=2.71828169413$
$f(x_3)=f(10^8)=\left(1+\dfrac{1}{10^8}\right)^{10^8}=2.71828179835$
Therefore we have:
$\lim\limits_{n \to \infty} \left(1+\dfrac{1}{n}\right)^n=e$, where $e=2.718281828459045....$