Answer
\[F'\left( 5 \right)=0\]
Work Step by Step
\[\begin{align}
& \text{Defining the functions of the graph} \\
& \\
& f\left( x \right)\text{ for }x<3\text{ is given by:} \\
& y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) \\
& \text{Using the points }\left( 1,7 \right)\text{ and }\left( 3,1 \right) \\
& m=\frac{1-7}{3-1}=-3 \\
& y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) \\
& y-1=-3\left( x-3 \right) \\
& y-1=-3x+9 \\
& y=-3x+10 \\
& f\left( x \right)\text{ for }x>3\text{ is given by:} \\
& y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) \\
& \text{Using the points }\left( 3,1 \right)\text{ and }\left( 7,5 \right) \\
& m=\frac{5-1}{7-3}=1 \\
& y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) \\
& y-1=\left( x-3 \right) \\
& y-1=x-3 \\
& y=x-2 \\
& \\
& g\left( x \right)\text{ for }x<3\text{ is given by:} \\
& y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) \\
& \text{Using the points }\left( 3,4 \right)\text{ and }\left( 0,1 \right) \\
& m=\frac{1-4}{0-3}=1 \\
& y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) \\
& y-1=1\left( x-0 \right) \\
& y-1=x+1 \\
& g\left( x \right)\text{ for }x>3\text{ is given by:} \\
& y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) \\
& \text{Using the points }\left( 3,4 \right)\text{ and }\left( 7,0 \right) \\
& m=\frac{0-4}{7-3}=-1 \\
& y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) \\
& y-0=-\left( x-7 \right) \\
& y=-x+7 \\
& \\
& \text{We know that }F=f+g \\
& F'\left( x \right)=\frac{d}{dx}\left[ f\left( x \right)+g\left( x \right) \right] \\
& \text{Using the functions for }x>3 \\
& F'\left( x \right)=\frac{d}{dx}\left[ \left( x-2 \right)+\left( -x+7 \right) \right] \\
& F'\left( x \right)=\frac{d}{dx}\left[ x-2-x+7 \right] \\
& F'\left( x \right)=0 \\
& \text{Calculate }F'\left( 5 \right) \\
& F'\left( 5 \right)=0 \\
\end{align}\]