Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.3 Rules of Differentiation - 3.3 Exercises - Page 152: 58

Answer

$$5$$

Work Step by Step

$$\eqalign{ & {\left. {\frac{d}{{dx}}\left[ {f\left( x \right) + g\left( x \right)} \right]} \right|_{x = 1}} \cr & {\text{Calculate the derivative}} \cr & \frac{d}{{dx}}\left[ {f\left( x \right) + g\left( x \right)} \right] = f'\left( x \right) + g'\left( x \right) \cr & {\text{Evaluate at }}x = 1 \cr & {\left. {\frac{d}{{dx}}\left[ {f\left( x \right) + g\left( x \right)} \right]} \right|_{x = 1}} = f'\left( 1 \right) + g'\left( 1 \right) \cr & {\text{From the table we know that }}f'\left( 1 \right) = 3{\text{ and }}g'\left( 1 \right) = 2 \cr & {\left. {\frac{d}{{dx}}\left[ {f\left( x \right) + g\left( x \right)} \right]} \right|_{x = 1}} = 3 + 2 \cr & {\left. {\frac{d}{{dx}}\left[ {f\left( x \right) + g\left( x \right)} \right]} \right|_{x = 1}} = 5 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.