Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - Review - Exercises - Page 1189: 18

Answer

curl $F=-e^{-y} \cos z\hat{i}-e^{-z} \cos x\hat{j}-e^{-x} \cos y\hat{k}$; div $F=-e^{-x} \sin y-e^{-y} \sin z-e^{-z} \sin x$

Work Step by Step

Let us consider $F=ai+bj+ck$ a) Since, curl $F=(\dfrac{\partial c}{\partial x}-\dfrac{\partial b}{\partial z}){i}+(\dfrac{\partial a}{\partial z}-\dfrac{\partial c}{\partial x}){j}+(\dfrac{\partial b}{\partial x}-\dfrac{\partial a}{\partial y}){k}$ Thus, curl $F=-e^{-y} \cos z\hat{i}-e^{-z} \cos x\hat{j}-e^{-x} \cos y\hat{k}$ b) $ div F=\dfrac{\partial a}{\partial x}+\dfrac{\partial b}{\partial y}+\dfrac{\partial c}{\partial z}$ Thus, div $F=\dfrac{\partial (e^{-x} \sin y)}{\partial x}+\dfrac{\partial (e^{-y} \sin z)}{\partial y}+\dfrac{\partial (e^{-z} \sin x)}{\partial z}$ Hence, div $F=-e^{-x} \sin y-e^{-y} \sin z-e^{-z} \sin x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.