Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.5 Curl and Divergence - 16.5 Exercises - Page 1150: 36

Answer

$\iint_D |\nabla f|^2 dA=0$

Work Step by Step

When $f$ is harmonic then $\nabla^2 f=0$ on $D$, then we have $\iint_Df \nabla^2 f dA=0$ Since, we have $\iint_Df \nabla^2 g dA=\oint_C f(\nabla g) \cdot n ds-\iint_D \nabla f \cdot \nabla g dA$ $\iint_D f \nabla^2 f dA=\oint_C f(\nabla f) \cdot n ds-\iint_D \nabla f \cdot \nabla f dA$ ...(Equation-1) Also, when $f(x,y)=0$ on the curve $C$, then we have $\iint_Cf( \nabla f) \cdot n ds=0$ From the equation- 1, we have $\iint_D \nabla f \cdot \nabla f dA=0$ Hence, we get $\iint_D |\nabla f|^2 dA=0$ (proved)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.