Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.5 Curl and Divergence - 16.5 Exercises - Page 1150: 25

Answer

$div (fF)=f[div F]+F \cdot \nabla f$

Work Step by Step

When $F=A i+B j+C k$, then we have $div F=\dfrac{\partial a}{\partial x}+\dfrac{\partial b}{\partial y}+\dfrac{\partial c}{\partial z}$ Let us consider that $F=F_1i+F_2j+F_3z$ and $div (fF)=\nabla \cdot (fF_1i+fF_2j+fF_3k)=\dfrac{\partial [fF_1]}{\partial x}+\dfrac{\partial [fF_2]}{\partial y}+\dfrac{\partial [fF_3]}{\partial x}$ $=f [\dfrac{\partial [F_1]}{\partial x}+\dfrac{\partial [F_2]}{\partial y}+\dfrac{\partial [F_3]}{\partial x}+[F_1i+F_2j+F_3z] \cdot [\dfrac{\partial f}{\partial x}i+\dfrac{\partial f}{\partial y}j+\dfrac{\partial f}{\partial z}k]$ $=f[div F]+F \cdot \nabla f$ Hence, $div (fF)=f[div F]+F \cdot \nabla f$ (proved)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.