Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.5 Curl and Divergence - 16.5 Exercises - Page 1150: 33

Answer

$\iint_Df \nabla^2 g dA=\oint_C f(\nabla g) \cdot n ds-\iint_D \nabla f \cdot \nabla g dA$

Work Step by Step

$\iint_Df \nabla^2 g dA+\iint_D \nabla f \cdot \nabla g dA=\oint_C f(\nabla g) \cdot n ds-\iint_D \nabla f \cdot \nabla g dA+\iint_D \nabla f \cdot \nabla g dA$ This implies that $\iint_Df \nabla^2 g dA+\iint_D \nabla f \cdot \nabla g dA=\oint_C f(\nabla g) \cdot n ds$ That is, $\iint_D \nabla (f \nabla g) dA=\oint_C f(\nabla g) \cdot n ds$ Now, we have $\iint_D div (f \nabla g) dA=\oint_C f(\nabla g) \cdot n ds$ Hence, we have $\iint_Df \nabla^2 g dA=\oint_C f(\nabla g) \cdot n ds-\iint_D \nabla f \cdot \nabla g dA$
This answer is currently locked

Someone from the community is currently working feverishly to complete this textbook answer. Don’t worry, it shouldn’t be long.