Answer
a) $C_1$ be any curve from $(0,0)$ to $(\pi,0)$
b) $C_2$ be any curve from $(0,0)$ to $(\dfrac{\pi}{2},0)$;
(other answers are also possible)
Work Step by Step
a) Here, we have $\int_{C_1}F \cdot dr=\int_{C_1} \nabla F \cdot dr$
or, $\sin (r-2s)-\sin (p-2q)=0$
Thus, we get $C_1$ be any curve from $(0,0)$ to $(\pi,0)$
b) $\int_{C_1}F \cdot dr=\int_{C_1} \nabla F \cdot dr$
or, $\sin (r-2s)-\sin (p-2q)=1$
Thus, we get $C_2$ be any curve from $(0,0)$ to $(\dfrac{\pi}{2},0)$