Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.5 Surface Area - 15.5 Exercises - Page 1068: 4

Answer

$ 9-\dfrac{5\sqrt{5}}{3}$

Work Step by Step

We have: $ D=\left\{ (x, y) | 0 \leq y \leq 2x , \ 0 \leq x \leq 2 \right\} $ We write the surface area of the part $z=f(x,y)$ as follows: $A(S)=\iint_{D} \sqrt {1+(f_x)^2+(f_y)^2} dx \ dy$ and, $\iint_{D} dA$ defines the projection of the surface on the xy-plane. Our aim is to calculate the area of the given surface. $A(S)=\iint_{D} \sqrt{1+(x/2)^2+(-1/2)^2} dA $ Now, $A(S)=\int_{0}^{2} \int_{0}^{2x} \sqrt {\dfrac{x^2}{2}+\dfrac{5}{4}} dy \ dx \\= \int_{0}^{2} x\sqrt {x^2+5} dx $ Consider $x^2+5=t$ and $dt = 2x dx$ So, $A(S)= \int_{5}^{0} \dfrac{\sqrt t dt }{2} \\= [\dfrac{t\sqrt t}{2}]_{5}^{9} \\=\dfrac{1}{3} [9 \sqrt 9-5 \sqrt 5]\\=\dfrac{1}{24} \times 10 \sqrt{10}\\= 9-\dfrac{5\sqrt{5}}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.