Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.8 Probability and Integration - Exercises - Page 448: 1

Answer

$C=2$ and $P(0 \leq X \leq 1)=\dfrac{3}{4}$

Work Step by Step

We are given that $p(x)=\dfrac{C}{(x+1)^3}$ $\int_0^{\infty} \dfrac{C}{(x+1)^3} dx =\lim\limits_{a \to \infty}\int_0^{a} \dfrac{C}{(x+1)^3} dx\\=-\dfrac{C}{2}\lim\limits_{a \to \infty} \dfrac{1}{(a+1)^2} -1 \\=\dfrac{-C}{2}\lim\limits_{a \to \infty} \dfrac{-a^2-2a}{(a+1)^2}\\=\dfrac{C}{2}$ The condition will be satisfied when $\int_0^{\infty} \dfrac{C}{(x+1)^3} dx=\dfrac{C}{2}=1$ or, $C=2$ We will find $P(0 \leq X \leq 1)=\int_0^1 \dfrac{2}{(x+1)^3}dx=-\dfrac{1}{(x+1)^2}|_0^1 \\=\dfrac{3}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.