Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.8 Probability and Integration - Exercises - Page 448: 10

Answer

$1$; $p(t)$ satisfies the given condition.

Work Step by Step

Let us consider for any $r \gt 0$: $I=\int_{0}^{\infty} (\dfrac{1}{r}) e^{-t/r} \ dx \\=(\dfrac{1}{r}) \lim\limits_{a \to \infty} \int_0^a e^{-t/r} \ dt \\=\dfrac{1}{r} \lim\limits_{a \to \infty} (-r) [e^{t/r}]_0^a\\=\\=(-1)(-1)\\=1$ This implies that $p(t)$ satisfies the given condition.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.