Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.5 The Method of Partial Fractions - Exercises - Page 424: 49

Answer

$$\ln \left|e^{x}-1\right|-\ln e^{x}+C$$

Work Step by Step

Given $$ \int \frac{e^{x} d x}{e^{2 x}-e^{x}}$$ Let $$u=e^x \ \ \ \ \ \to \ \ \ \ du=e^x dx $$ Then \begin{aligned} \int \frac{e^{x} d x}{e^{2 x}-e^{x}}&=\int \frac{u \cdot \frac{1}{u} d u}{u^{2}-u}\\ &=\int \frac{1}{u(u-1)} d u \end{aligned} Since \begin{align*} \int \frac{1}{u(u-1)} &=\frac{A}{u}+\frac{B}{u-1}\\ &=\frac{(A+B) u-A}{u(u-1)}\\ 1&= (A+B) u-A \end{align*} Then \begin{align*} \text{at } u&=0 \ \ \ \ \to A=-1 \\ \text{at } u&= 1\ \ \ \ \to B=1 \end{align*} Hence \begin{align*} \int \frac{e^{x} d x}{e^{2 x}-e^{x}}&=-\int \frac{1}{u} d u+\int \frac{1}{u-1} d u\\ &=\ln |u-1|-\ln |u|+C\\ &=\ln \left|e^{x}-1\right|-\ln e^{x}+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.