Answer
$$\frac{1}{2} \tan ^{-1}\left(x^{2}\right)+C$$
Work Step by Step
Given
$$ \int \frac{x}{x^{4}+1} d x$$
Let
$$u=x^2 \ \ \ \ \ \to \ \ \ \ du=2dx $$
Then
\begin{align*}
\int \frac{x}{x^{4}+1} d x&=\frac{1}{2} \int \frac{1}{u^{2}+1} d u\\
&=\frac{1}{2} \tan ^{-1} u+C\\
&=\frac{1}{2} \tan ^{-1}\left(x^{2}\right)+C
\end{align*}