Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.5 The Method of Partial Fractions - Exercises - Page 424: 48

Answer

$$\frac{2}{3(x+2)^{3}}-\frac{1}{2(x+2)^{2}}+C$$

Work Step by Step

Given $$ \int \frac{x d x}{(x+2)^{4}}$$ Let $$u=x+2 \ \ \ \ \ \to \ \ \ \ du= dx $$ Then \begin{aligned} \int \frac{x}{(x+2)^{4}} d x &=\int \frac{u-2}{u^{4}} d u\\ &=\int \frac{u}{u^{4}} d u-\int \frac{2}{u^{4}} d u \\ &=\int u^{-3} d u-\int 2 u^{-4} d u\\ &=\frac{2}{3 u^{3}}-\frac{1}{2 u^{2}}+C \\ &=\frac{2}{3(x+2)^{3}}-\frac{1}{2(x+2)^{2}}+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.