Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Preliminary Questions - Page 403: 4

Answer

We use: $$\int \sin ^{n} x d x=-\frac{\sin ^{n-1} x \cos x}{n}+\frac{n-1}{n} \int \sin ^{n-2} x d x$$

Work Step by Step

Given $$\int \sin ^{6} x \cos ^{2} x d x$$ Since \begin{align*} \int \sin ^{6} x \cos ^{2} x d x&= \int \sin^6x (1-\sin^2 x)dx\\ &=\int (\sin^6 x-\sin^8 x)dx \end{align*} Then use $$\int \sin ^{n} x d x=-\frac{\sin ^{n-1} x \cos x}{n}+\frac{n-1}{n} \int \sin ^{n-2} x d x $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.