Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Preliminary Questions - Page 403: 2

Answer

$$-\frac{\sin ^{5} x \cos x}{6}+\frac{5}{6}\left( -\frac{\sin ^{3} x \cos x}{4}+\frac{3}{4} \left[-\frac{\sin x \cos x}{2}+\frac{1}{2}x\right]\right) $$

Work Step by Step

Given $$ \int \sin ^{6} x d x$$ Use $$ \int \sin ^{n} x d x=-\frac{\sin ^{n-1} x \cos x}{n}+\frac{n-1}{n} \int \sin ^{n-2} x d x$$ For $n=6 $ \begin{align*} \int \sin ^{6} x d x&=-\frac{\sin ^{5} x \cos x}{6}+\frac{5}{6} \int \sin ^{4} x d x\\ &=-\frac{\sin ^{5} x \cos x}{6}+\frac{5}{6}\left( -\frac{\sin ^{3} x \cos x}{4}+\frac{3}{4} \int \sin ^{2} x d x\right)\\ &=-\frac{\sin ^{5} x \cos x}{6}+\frac{5}{6}\left( -\frac{\sin ^{3} x \cos x}{4}+\frac{3}{4} \left[-\frac{\sin x \cos x}{2}+\frac{1}{2}x\right]\right) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.