Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.2 Trigonometric Integrals - Preliminary Questions - Page 403: 1

Answer

$$-\left(\cos x-\frac{1}{3}\cos^3x+\frac{1}{5}\cos ^5x\right) +C$$

Work Step by Step

$$\int \sin^5x dx$$ Use $$\sin^5x= \sin^4x \sin x= (1-\cos^2 x)^2\sin x$$ \begin{align*} \int \sin^5x dx&=\int (1-\cos^2 x)^2\sin xdx,\ \ \\ \text{Let }\ u=\cos x \, \ du=-\sin xdx\\ &= -\int (1-2u^2+u^4)du\\ &=-\left(u-\frac{1}{3}u^3+\frac{1}{5}u^5\right) +C\\ &= -\left(\cos x-\frac{1}{3}\cos^3x+\frac{1}{5}\cos ^5x\right) +C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.