Answer
$$1$$
Work Step by Step
Since
\begin{align*}
\lim _{x \rightarrow 1} \frac{\sqrt{1-x^{2}}}{\cos ^{-1} x}&=\frac{0}{0}
\end{align*}
Then by using L’Hôpital’s Rule
\begin{align*}
\lim _{x \rightarrow 1} \frac{\sqrt{1-x^{2}}}{\cos ^{-1} x}\\
&= \lim _{x\to \:1}\left(\frac{-\frac{x}{\sqrt{1-x^2}}}{-\frac{1}{\sqrt{1-x^2}}}\right)\\
&= \lim _{x\to \:1}\left(x\right)\\
&=1
\end{align*}