Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 7 - Exponential Functions - Chapter Review Exercises - Page 388: 110

Answer

$-\frac{1}{4}.$

Work Step by Step

Since we have $$ \lim _{x \rightarrow -2} \frac{ x^3+2x^2-x-2 }{x^4+2x^3-4x-8}=\frac{-8+8+2-2}{16-16+8-8}= \frac{0}{0}. $$ Then we can apply L’Hôpital’s Rule as follows $$ \lim _{x \rightarrow -2} \frac{ x^3+2x^2-x-2 }{x^4+2x^3-4x-8}=\lim _{x \rightarrow -2} \frac{ 3x^2+4x -1 }{4x^3+6x^2-4 }\\ = \frac{ 12-8-1}{ -32+24-4}=-\frac{3}{12}=-\frac{1}{4}. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.