Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 7 - Exponential Functions - Chapter Review Exercises - Page 388: 113

Answer

$3$

Work Step by Step

Since we have $$\lim _{\theta \rightarrow 0} \frac{2 \sin \theta-\sin 2 \theta}{\sin \theta-\theta \cos \theta}=\frac{0}{0}.$$ We can apply L’Hôpital’s Rule as follows $$\lim _{\theta \rightarrow 0} \frac{2 \sin \theta-\sin 2 \theta}{\sin \theta-\theta \cos \theta}=\lim _{\theta \rightarrow 0} \frac{2 \cos\theta-2\cos2 \theta}{\cos\theta- \cos \theta+\theta\sin \theta}=\frac{0}{0}.$$ Again, we can apply L’Hôpital’s Rule as follows $$ \lim _{\theta \rightarrow 0} \frac{2 \cos\theta-2\cos2 \theta}{\theta\sin \theta}= \lim _{\theta \rightarrow 0} \frac{-2 \sin\theta+4\sin\theta}{\sin \theta+\theta\cos\theta}=\frac{0}{0}.$$ Again, we can apply L’Hôpital’s Rule as follows $$ \lim _{\theta \rightarrow 0} \frac{-2 \sin\theta+4\sin2\theta}{\sin \theta+\theta\cos\theta}= \lim _{\theta \rightarrow 0} \frac{-2 \cos\theta+8\cos2\theta}{\cos\theta+\cos\theta-\theta\sin\theta}=\frac{6}{2}=3.$$ Hence, $$\lim _{\theta \rightarrow 0} \frac{2 \sin \theta-\sin 2 \theta}{\sin \theta-\theta \cos \theta}=3.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.