Answer
$$ y'
=\frac{1}{t^2\sqrt{1-t^{-2}}}- \frac{1}{|t|\sqrt{t^2-1}}.$$
Work Step by Step
Since $ y=\cos^{-1}t^{-1}-\sec^{-1}t $, then the derivative $ y'$ is given by
$$ y'= \frac{-(t^{-1})'}{\sqrt{1-t^{-2}}}- \frac{1}{|t|\sqrt{t^2-1}}\\
= \frac{-(-t^{-2})}{\sqrt{1-t^{-2}}}- \frac{1}{|t|\sqrt{t^2-1}}\\
=\frac{1}{t^2\sqrt{1-t^{-2}}}- \frac{1}{|t|\sqrt{t^2-1}}.$$