Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 7 - Exponential Functions - 7.7 L'Hôpital's Rule - Exercises - Page 367: 49

Answer

$ e^{-3/2}.$

Work Step by Step

To find the limit $$ \lim _{x \rightarrow 0}(\cos x)^{3/x^2} $$ we have to find $$\ln \lim _{x \rightarrow 0}(\cos x)^{3/x^2} =\lim _{x \rightarrow 0}\ln(\cos x)^{3/x^2}=\lim _{x \rightarrow 0}\frac{3\ln \cos x}{x^2} =\frac{\infty}{\infty}$$ which is an intermediate form, so we can apply L’Hôpital’s Rule as follows $$ \lim _{x \rightarrow 0}\frac{3\ln \cos x}{x^2}=\lim _{x \rightarrow 0}\frac{-3\sin x/ \cos x}{2x}=\frac{0}{0} $$ Which is an intermediate form, so we can apply L’Hôpital’s Rule as follows $$\lim _{x \rightarrow 0}\frac{-3\sin x/ \cos x}{2x}=\lim _{x \rightarrow 0}\frac{-3\sin x}{2x\cos x}=\lim _{x \rightarrow 0}\frac{-3\cos x}{2\cos x-2x\sin x}=-\frac{3}{2}.$$ Now, $$\ln \lim _{x \rightarrow 0}(\cos x)^{3/x^2}=-\frac{3}{2}.\Longrightarrow \lim _{x \rightarrow 0}(\cos x)^{3/x^2}=e^{-3/2}. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.