Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 7 - Exponential Functions - 7.7 L'Hôpital's Rule - Exercises - Page 367: 44

Answer

$0$

Work Step by Step

We have $$ \lim _{x \rightarrow \infty}e^{-x}(x^3-x^2+9)=\lim _{x \rightarrow \infty}\frac{x^3-x^2+9}{e^x}=\frac{\infty}{\infty} $$ which is an intermediate form, so we can apply L’Hôpital’s Rule as follows $$ \lim _{x \rightarrow \infty}\frac{x^3-x^2+9}{e^x}\\=\lim _{x \rightarrow \infty}\frac{3x^2-2x}{e^x}=\frac{\infty}{\infty}$$ which is an intermediate form, so we can apply L’Hôpital’s Rule as follows $$\lim _{x \rightarrow \infty}\frac{3x^2-2x}{e^x}=\lim _{x \rightarrow \infty}\frac{6x-2}{e^x}=\frac{0}{1+0}=0. $$ which is an intermediate form, so we can apply L’Hôpital’s Rule as follows $$\lim _{x \rightarrow \infty}\frac{6x-2}{e^x}=\lim _{x \rightarrow \infty}\frac{6}{e^x}=\frac{6}{\infty}=0. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.