Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 7 - Exponential Functions - 7.7 L'Hôpital's Rule - Exercises - Page 367: 48

Answer

$1$

Work Step by Step

To find the limit $$ \lim _{x \rightarrow 0^+}x^{\sin x} $$ we have to find $$\ln \lim _{x \rightarrow 0^+}x^{\sin x}=\lim _{x \rightarrow 0^+}\ln x^{\sin x}\\ =\lim _{x \rightarrow 0^+}\frac{\ln x}{\csc x}=\frac{\infty}{\infty}$$ which is an intermediate form, so we can apply L’Hôpital’s Rule as follows $$ \lim _{x \rightarrow 0^+}\frac{\ln x}{\csc x}=\lim _{x \rightarrow 0^+}\frac{1/x}{-\csc x\cot x}\\ =\lim _{x \rightarrow 0^+}\frac{-\sin^2 x}{x\cos x}=\frac{0}{0} $$ Which is an intermediate form, so we can apply L’Hôpital’s Rule as follows $$\lim _{x \rightarrow 0^+}\frac{-\sin^2 x}{x\cos x}=\lim _{x \rightarrow 0^+}\frac{-2\sin x\cos x}{\cos x-x\sin x}=\frac{0}{1}=0.$$ Now, $$\ln \lim _{x \rightarrow 0^+}x^{\sin x}=0\Longrightarrow \lim _{x \rightarrow 0^+}x^{\sin x}=e^0=1. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.