Answer
$\dfrac{376\pi}{15}$
Work Step by Step
The shell method to compute the volume of a region: The volume of a solid obtained by rotating the region under $y=f(x)$ over an interval $[m,n]$ about the y-axis is given by:
$V=2 \pi \int_{m}^{n} (Radius) \times (height \ of \ the \ shell) \ dy=2 \pi \int_{m}^{n} (y) \times f(y) \ dy$
Now, $V=2\pi \int_{0}^{2} (x^2+2)^2 \ dx\\= 2 \pi \int_0^2 (x^4+4+4x^2) \ dx \\= \pi [\dfrac{x^5}{5}+4x+\dfrac{4x^3}{3}]_0^2 \\=2 \pi [\dfrac{32}{5}+8+\dfrac{32}{3}-0] \\=\dfrac{376\pi}{15}$