Answer
$\dfrac{ 704 \pi}{15}$
Work Step by Step
The shell method to compute the volume of a region: The volume of a solid obtained by rotating the region under $y=f(x)$ over an interval $[m,n]$ about the y-axis is given by:
$V=2 \pi \int_{m}^{n} (Radius) \times (height \ of \ the \ shell) \ dy=2 \pi \int_{m}^{n} (y) \times f(y) \ dy$
Now, $V=2\pi \int_{2}^{6} (y) \sqrt {y-2} \ dy \\ = 2\pi [\dfrac{2}{5}(y-2)^{5/2}+\dfrac{4}{3}(y-2)^{3/2}]_2^6 \\=2\pi [\dfrac{64}{5}+\dfrac{32}{3}] \\=\dfrac{ 704 \pi}{15}$