Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 6 - Applications of the Integral - 6.4 The Method of Cylindrical Shells - Exercises - Page 312: 36

Answer

$40 \pi$

Work Step by Step

The shell method to compute the volume of a region: The volume of a solid obtained by rotating the region under $y=f(x)$ over an interval $[m,n]$ about the y-axis is given by: $V=2 \pi \int_{m}^{n} (Radius) \times (height \ of \ the \ shell) \ dy=2 \pi \int_{m}^{n} (x) \times f(x) \ dx$ Now, $V=2\pi \int_{0}^{2} (x+3) (4-x^2) \ dx \\ = 2\pi \int_0^2 [4x-x^3+12-3x^2]_0^2 \\=2\pi [2x^2-\dfrac{x^4}{4}+12x-x^3]_0^2 \\=40 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.