Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.1 Approximating and Computing Area - Exercises - Page 236: 48

Answer

$$\frac{81}{2}$$

Work Step by Step

Given $$f(x)=3 x+6, \quad[1,4]$$ Since $\Delta x= \dfrac{b-a}{N}=\dfrac{3}{N}$, and $$ x_i =a+i\Delta x= 1+\dfrac{3i}{N}$$ Since \begin{align*} R_N& =\Delta x \sum_{i=1}^{N} f\left(x_{i}\right)\\ &=\frac{3}{N} \sum_{i=1}^{N} 3\left(1+\dfrac{3i}{N}\right)+6\\ &=\frac{3 }{N } \sum_{i=1}^{N} 9+\dfrac{9i}{N}\\ &=\frac{3}{N}\left(\frac{9N(N+1)}{2N}+9N \right)\\ &=27\left(1+\frac{N}{2 N}+\frac{1}{2 N}\right) \end{align*} Then \begin{align*} \lim_{N\to\infty}R_N&=\lim_{N\to\infty}27\left(1+\frac{N}{2 N}+\frac{1}{2 N}\right)\\ &=27+\frac{27}{2}=\frac{81}{2} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.