Answer
Volume = $3927$ $cm^{3}$
Surface = $314.2$ $cm^{2}$
Work Step by Step
Volume
$V(r)$ = $\frac{4}{3}\pi{r^{3}}$
$V'(r)$ = $4\pi{r^{2}}$
$V'(r)$ = $\frac{ΔV}{Δr}$
$ΔV$ = $V'(r)Δr$
$ΔV$ = $4\pi{(25)^{2}}(0.5)$ = $3927$ $cm^{3}$
Surface
$V(r)$ = $4\pi{r^{2}}$
$V'(r)$ = $8\pi{r}$
$V'(r)$ = $\frac{ΔV}{Δr}$
$ΔV$ = $V'(r)Δr$
$ΔV$ = $8\pi{(25)}(0.5)$ = $314.2$ $cm^{2}$