Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Differentiation - 4.1 Linear Approximation and Applications - Exercises - Page 173: 33

Answer

a) $-0.434906$ $kilopascals$ b) Actual change = -0.418273$ $kilopascals$ Percentage error = $3.98$%

Work Step by Step

a) $P'(h)$ = $128(-0.157)e^{-0.157h}$ = $-20.096e^{-0.157h}$ $P'(h)$ = $\frac{ΔP}{Δh}$ at $h = 20, Δh =0.5$ $ΔP$ = $P'(h)Δh$ = $-20.096e^{-0.157(20)}(0.5)$ = $-0.434906$ $kilopascals$ b) Actual change $P(20.5) = 128e^{-0.157(20.5)} = 5.121925$ $P(20) = 128e^{-0.157(20)} = 5.540198$ $P(20.5) - P(20) = 5.121925 - 5.540198 = -0.418273$ $kilopascals$ Percentage error = $\frac{-0.434906-(-0.418273)}{-0.418273}\times100$ = $3.98$%
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.