Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Differentiation - 4.1 Linear Approximation and Applications - Exercises - Page 173: 27

Answer

$\sqrt{2.1}-\sqrt{2}$ is larger than $\sqrt{9.1}-\sqrt{9}$

Work Step by Step

For $\sqrt{2.1}-\sqrt{2}$, consider $ f(x)=\sqrt{x}$, $a=2 $ and $\Delta x= 0.1 $, since \begin{align*} f'(x) &= \frac{1}{2\sqrt{x}}\\ f'( 2)&=\frac{1}{2\sqrt{2}} \end{align*} Then \begin{align*} \Delta f&=f(a+\Delta x)-f(a)\\ &\approx f'(a)\Delta f \\ &=\frac{0.1}{2\sqrt{2}} \\ &=0.03535 \end{align*} For $\sqrt{9.1}-\sqrt{9}$, consider $ f(x)=\sqrt{x}$, $a=9 $ and $\Delta x= 0.1 $, since \begin{align*} f'(x) &= \frac{1}{2\sqrt{x}}\\ f'( 9)&=\frac{1}{6} \end{align*} Then \begin{align*} \Delta f&=f(a+\Delta x)-f(a)\\ &\approx f'(a)\Delta f \\ &=\frac{0.1}{6} \\ &=0.01666 \end{align*} Hence $\sqrt{2.1}-\sqrt{2}$ is larger than $\sqrt{9.1}-\sqrt{9}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.