Answer
$$L(t)= 16t+ 16$$
Work Step by Step
Given $$v(t)=32 t-4 t^{2}, \quad a=2$$
Since
\begin{align*}
v^{\prime}(t)&=32-8t \\
v^{\prime}(2)&=16
\end{align*}
Then the linear approximation is given by
\begin{align*}
L(t)&=v^{\prime}(a)(t-a)+v(a)\\
&= 16(t-2)+ 48\\
&=16t+ 16
\end{align*}