Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - Chapter Review Exercises - Page 221: 3

Answer

$$0.002,\ \ \ ,0.0020012\ \ \ ,1.20\times 10^{-6}$$

Work Step by Step

Given $$625^{1 / 4}-624^{1 / 4} $$ Consider $f(x)=x^{1 /4}, a=625,$ and $\Delta x=-1$, since \begin{align*} f^{\prime}(x)&=\frac{1}{4}x^{-3/4}\\ f^{\prime}(625)&=\frac{-1}{500}= -0.002 \end{align*} Then \begin{align*} \Delta f&=f (a+\Delta x)-f(a)\\ &\approx f'(a)\Delta x\\ &\approx (-0.002 )(-1) \\ &\approx 0.002 \end{align*} By using a calculator, $625^{1 / 4}-624^{1 / 4}= 0.0020012 $ and the error in the linear approximation is $$ |0.002 - 0.0020012 |=1.20\times 10^{-6} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.