Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - Chapter Review Exercises - Page 221: 4

Answer

$$10.05,\ \ \ 10.049875 ,\ \ 1.244\times 10^{-4}$$

Work Step by Step

Given $$\sqrt{101} $$ Consider $f(x)=x^{1 /2}, a=100,$ and $\Delta x=1$, since \begin{align*} f^{\prime}(x)&=\frac{1}{2}x^{-1/2}\\ f^{\prime}(100)&=\frac{1}{20} \end{align*} Then the linear approximation is given by \begin{align*} L(x)&=f^{\prime}(a)(x-a)+f(a)\\ &= \frac{1}{20}(x-100)+ 10\\ &=\frac{x}{20}+5\\ L(101)&\approx \frac{101}{20}+5=10.05 \end{align*} By using a calculator, $\sqrt{101} = 10.049875$ and the error in the linear approximation is$$ |10.049875 - 10.05|=1.244\times 10^{-4} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.