Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.7 Newton's Method - Exercises - Page 220: 14

Answer

$3^{-1/4}\approx0.759$

Work Step by Step

Given $$3^{-1/4}= (1/3)^{1/4}= $$ Let $$f(x) =x^4-1/3 $$ and suppose that $x_0=1$, then Since $$ x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$$ Then \begin{align*} x_{n+1}&= x_n -\frac{x_n^4-1/3 }{4x_n^3}\\ &=\frac{x_n^4+1/3 }{4x_n^3} \end{align*} Hence \begin{aligned} x_{1}&=\frac{x_0^4+1/3 }{4x_0^3}=\frac{(1)^4+1/3 }{4(1) ^3} \approx 0.833 \\ x_{2}&=\frac{x_1^4+1/3 }{4x_1^3}=\frac{(0.833)^4+1/3 }{4(0.833) ^3} \approx0.768\\ x_{3}&=\frac{x_2^4+1/3 }{4x_2^3} =\frac{(0.768)^4+1/3 }{4(0.768) ^3} \approx0.759\\ x_{4}&=\frac{x_3^4+1/3 }{4x_3^3} =\frac{(0.759)^4+1/3 }{4(0.759) ^3} \approx0.759 \end{aligned} Since $x_3=x_4 $, then $3^{-1/4}\approx0.759$ By calculator we get $$3^{-1/4}=0.759$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.