Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.7 Newton's Method - Exercises - Page 220: 11

Answer

$$ 3.3166$$

Work Step by Step

Given $$\sqrt{11} $$ Let $$f(x) =x^2-11 $$ and suppose that $x_0=3$, then Since $$ x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$$ Then \begin{align*} x_{n+1}&= x_n -\frac{x_n^{2}-11}{2x_n}\\ &=\frac{x_n^{2}+11}{2x_n} \end{align*} Hence \begin{aligned} x_{1}&=\frac{x_0^{2}+11}{2x_0}= \frac{(3)^{2}+11}{2(3)} \approx 3.3333333 \\ x_{2}&=\frac{x_1^{2}+11}{2x_1}= \frac{( 3.3333333)^{2}+11}{2( 3.3333333)} \approx 3.31666\\ x_{3}&=\frac{x_2^{2}+11}{2x_2} = \frac{(3.31666)^{2}+11}{2(3.31666)} \approx3.31662479 \end{aligned} Since $x_2=x_3 $, then $\sqrt{11}\approx 3.3166$ By calculator, we get $$\sqrt{11}= 3.31662479$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.