Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.7 Newton's Method - Exercises - Page 220: 13

Answer

$2^{7/3}\approx5.039$

Work Step by Step

Given $$2^{7/3}= (2^7)^{1/3}= (128)^{1/3} $$ Let $$f(x) =x^3-128 $$ and suppose that $x_0=5$, then Since $$ x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$$ Then \begin{align*} x_{n+1}&= x_n -\frac{x_n^3-128 }{3x_n^2}\\ &=\frac{2x_n^3+128 }{3x_n^2} \end{align*} Hence \begin{aligned} x_{1}&=\frac{2x_0^3+128 }{3x_0^2}=\frac{2(5)^3+128 }{3(5)^2} \approx 5.04 \\ x_{2}&=\frac{2x_1^3+128 }{3x_1^2}=\frac{2(5.04)^3+128 }{3(5.04)^2} \approx5.039\\ x_{3}&=\frac{2x_2^3+128 }{3x_2^2} =\frac{2(5.039)^3+128 }{3(5.039)^2} \approx5.039 \end{aligned} Since $x_2=x_3 $, then $2^{7/3}\approx5.039$ By calculator we get $$2^{7/3}=5.03968$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.