Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - Chapter Review Exercises - Page 162: 8

Answer

$$ y=12x+16$$

Work Step by Step

Given $$f(x)=x^{3}, \quad a=-2$$ Since $f(-2)=-8$ and $$ f^{\prime}(a) =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$$ Then \begin{aligned} f^{\prime}(-2) & =\lim _{h \rightarrow 0}\frac{(-2+h)^{3}-(-2)^{3}}{h} \\ &=\lim _{h \rightarrow 0} \frac{-8+12 h-6 h^{2}+h^{3}+8}{h}\\ &=\lim _{h \rightarrow 0}(12-6h+h^2)\\ &=12 \end{aligned} Then the tangent line at $x=-2$ is given by \begin{align*} \frac{y-y_1}{x-x_1}&=f'(a)\\ \frac{y+8}{x+2}&=12\\ y+8&= 12(x+2)\\ \end{align*} Hence $$ y=12x+16$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.