Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - Chapter Review Exercises - Page 162: 10

Answer

$$\frac{1}{\sqrt{2 x+1}}$$

Work Step by Step

Given $$y=\sqrt{2 x+1}$$ Now we find the derivative: \begin{align*} \frac{d y}{d x}&=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\\ &=\lim _{h \rightarrow 0} \frac{\sqrt{2 x+2 h+1}-\sqrt{2 x+1}}{h}\\ &=\lim _{h \rightarrow 0} \frac{\sqrt{2 x+2 h+1}-\sqrt{2 x+1}}{h} \cdot \frac{\sqrt{2 x+2 h+1}+\sqrt{2 x+1}}{\sqrt{2 x+2 h+1}+\sqrt{2 x+1}}\\ &= \lim _{h \rightarrow 0} \frac{(2 x+2 h+1)-(2 x+1)}{h(\sqrt{2 x+2 h+1}+\sqrt{2 x+1})}\\ &=\lim _{h \rightarrow 0} \frac{2 h}{h(\sqrt{2 x+2 h+1}+\sqrt{2 x+1})}\\ &=\frac{1}{\sqrt{2 x+1}} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.