Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - Chapter Review Exercises - Page 162: 7

Answer

$$ y=-\frac{1}{16} x+\frac{1}{2}$$

Work Step by Step

Given $$f(x)=x^{-1}, \quad a=4$$ Since $f(4)=0.25$ and $$ f^{\prime}(a) =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$$ Then \begin{aligned} f^{\prime}(4) & =\lim _{h \rightarrow 0} \frac{\frac{1}{4+h} - \frac{1}{4}}{h} \\ &=\lim _{h \rightarrow 0} \frac{4-(4+h)}{4 h(4+h)}\\ &=\lim _{h \rightarrow 0} \frac{-1}{4(4+h)}\\ &=-\frac{1}{16} \end{aligned} Then the tangent line at $x=4$ is given by \begin{align*} \frac{y-y_1}{x-x_1}&=f'(a)\\ \frac{y-0.25}{x-4}&=\frac{-1}{16}\\ y-\frac{1}{4}&= \frac{-1}{16}(x-4)\\ \end{align*} Hence $$ y=-\frac{1}{16} x+\frac{1}{2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.