Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.9 Related Rates - Exercises - Page 159: 3

Answer

a) $100\pi \,m^{2}/min $ b) $24\pi\, m^{2}/min $

Work Step by Step

a) $\frac{dA}{dt}=\frac{dA}{dr}\times\frac{dr}{dt}=\frac{d}{dr}(\pi r^{2})\times2\,m/min $ $=2\pi r\times2\,m/min $ When $ r=25 \,m $, $\frac{dA}{dt}=2\pi(25\,m)\times2\,m/min $ $=100\pi \,m^{2}/min $ b) As $\frac{dr}{dt}=2\,m/min $ and r(0)=0, after 3 minutes, the radius will be equal to $3\,min\times2\,m/min=6\,m $ Then, $\frac{dA}{dt}=2\pi(6\,m)\times2\,m/min $ $=24\pi\, m^{2}/min $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.